Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Biol Evol ; 40(2)2023 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-36718533

RESUMO

Bacterial evolution of antibiotic resistance frequently has deleterious side effects on microbial growth, virulence, and susceptibility to other antimicrobial agents. However, it is unclear how these trade-offs could be utilized for manipulating antibiotic resistance in the clinic, not least because the underlying molecular mechanisms are poorly understood. Using laboratory evolution, we demonstrate that clinically relevant resistance mutations in Escherichia coli constitutively rewire a large fraction of the transcriptome in a repeatable and stereotypic manner. Strikingly, lineages adapted to functionally distinct antibiotics and having no resistance mutations in common show a wide range of parallel gene expression changes that alter oxidative stress response, iron homeostasis, and the composition of the bacterial outer membrane and cell surface. These common physiological alterations are associated with changes in cell morphology and enhanced sensitivity to antimicrobial peptides. Finally, the constitutive transcriptomic changes induced by resistance mutations are largely distinct from those induced by antibiotic stresses in the wild type. This indicates a limited role for genetic assimilation of the induced antibiotic stress response during resistance evolution. Our work suggests that diverse resistance mutations converge on similar global transcriptomic states that shape genetic susceptibility to antimicrobial compounds.


Assuntos
Antibacterianos , Transcriptoma , Testes de Sensibilidade Microbiana , Antibacterianos/farmacologia , Resistência Microbiana a Medicamentos/genética , Escherichia coli/genética , Escherichia coli/metabolismo , Bactérias/genética , Farmacorresistência Bacteriana/genética
2.
Mol Syst Des Eng ; 7(1): 21-33, 2022 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-35127141

RESUMO

The negative membrane potential of bacterial cells influences crucial cellular processes. Inspired by the molecular scaffold of the antimicrobial peptide PGLa, we have developed antimicrobial foldamers with a computer-guided design strategy. The novel PGLa analogues induce sustained membrane hyperpolarization. When co-administered as an adjuvant, the resulting compounds - PGLb1 and PGLb2 - have substantially reduced the level of antibiotic resistance of multi-drug resistant Escherichia coli, Klebsiella pneumoniae and Shigella flexneri clinical isolates. The observed antibiotic potentiation was mediated by hyperpolarization of the bacterial membrane caused by the alteration of cellular ion transport. Specifically, PGLb1 and PGLb2 are selective ionophores that enhance the Goldman-Hodgkin-Katz potential across the bacterial membrane. These findings indicate that manipulating bacterial membrane electrophysiology could be a valuable tool to overcome antimicrobial resistance.

3.
Nat Commun ; 10(1): 5731, 2019 12 16.
Artigo em Inglês | MEDLINE | ID: mdl-31844052

RESUMO

Antimicrobial peptides (AMPs) are key effectors of the innate immune system and promising therapeutic agents. Yet, knowledge on how to design AMPs with minimal cross-resistance to human host-defense peptides remains limited. Here, we systematically assess the resistance determinants of Escherichia coli against 15 different AMPs using chemical-genetics and compare to the cross-resistance spectra of laboratory-evolved AMP-resistant strains. Although generalizations about AMP resistance are common in the literature, we find that AMPs with different physicochemical properties and cellular targets vary considerably in their resistance determinants. As a consequence, cross-resistance is prevalent only between AMPs with similar modes of action. Finally, our screen reveals several genes that shape susceptibility to membrane- and intracellular-targeting AMPs in an antagonistic manner. We anticipate that chemical-genetic approaches could inform future efforts to minimize cross-resistance between therapeutic and human host AMPs.


Assuntos
Antibacterianos/farmacologia , Peptídeos Catiônicos Antimicrobianos/imunologia , Farmacorresistência Bacteriana/genética , Escherichia coli/genética , Peptídeos Catiônicos Antimicrobianos/química , Peptídeos Catiônicos Antimicrobianos/genética , Membrana Externa Bacteriana/efeitos dos fármacos , Membrana Externa Bacteriana/imunologia , Evolução Molecular Direcionada , Farmacorresistência Bacteriana/efeitos dos fármacos , Escherichia coli/efeitos dos fármacos , Escherichia coli/imunologia , Genes Bacterianos/genética , Genes Bacterianos/imunologia , Testes de Sensibilidade Microbiana , Mutação
4.
Nat Commun ; 10(1): 4538, 2019 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-31586049

RESUMO

Antimicrobial peptides (AMPs) are promising antimicrobials, however, the potential of bacterial resistance is a major concern. Here we systematically study the evolution of resistance to 14 chemically diverse AMPs and 12 antibiotics in Escherichia coli. Our work indicates that evolution of resistance against certain AMPs, such as tachyplesin II and cecropin P1, is limited. Resistance level provided by point mutations and gene amplification is very low and antibiotic-resistant bacteria display no cross-resistance to these AMPs. Moreover, genomic fragments derived from a wide range of soil bacteria confer no detectable resistance against these AMPs when introduced into native host bacteria on plasmids. We have found that simple physicochemical features dictate bacterial propensity to evolve resistance against AMPs. Our work could serve as a promising source for the development of new AMP-based therapeutics less prone to resistance, a feature necessary to avoid any possible interference with our innate immune system.


Assuntos
Anti-Infecciosos/farmacologia , Peptídeos Catiônicos Antimicrobianos/farmacologia , Farmacorresistência Bacteriana Múltipla/genética , Genoma Bacteriano/efeitos dos fármacos , Peptídeos Catiônicos Antimicrobianos/uso terapêutico , Bactérias/efeitos dos fármacos , Bactérias/genética , Infecções Bacterianas/tratamento farmacológico , Evolução Molecular Direcionada , Desenvolvimento de Medicamentos/métodos , Farmacorresistência Bacteriana Múltipla/efeitos dos fármacos , Genoma Bacteriano/genética , Humanos , Metagenômica , Testes de Sensibilidade Microbiana , Plasmídeos/genética , Mutação Puntual , Microbiologia do Solo
5.
Elife ; 82019 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-31418687

RESUMO

Antibiotic resistance typically induces a fitness cost that shapes the fate of antibiotic-resistant bacterial populations. However, the cost of resistance can be mitigated by compensatory mutations elsewhere in the genome, and therefore the loss of resistance may proceed too slowly to be of practical importance. We present our study on the efficacy and phenotypic impact of compensatory evolution in Escherichia coli strains carrying multiple resistance mutations. We have demonstrated that drug-resistance frequently declines within 480 generations during exposure to an antibiotic-free environment. The extent of resistance loss was found to be generally antibiotic-specific, driven by mutations that reduce both resistance level and fitness costs of antibiotic-resistance mutations. We conclude that phenotypic reversion to the antibiotic-sensitive state can be mediated by the acquisition of additional mutations, while maintaining the original resistance mutations. Our study indicates that restricting antimicrobial usage could be a useful policy, but for certain antibiotics only.


Assuntos
Adaptação Biológica , Antibacterianos/metabolismo , Farmacorresistência Bacteriana , Escherichia coli/efeitos dos fármacos , Escherichia coli/crescimento & desenvolvimento , Genótipo , Fenótipo , Meios de Cultura/química , Escherichia coli/genética , Fatores de Tempo
6.
Artigo em Inglês | MEDLINE | ID: mdl-31235632

RESUMO

Multitargeting antibiotics, i.e., single compounds capable of inhibiting two or more bacterial targets, are generally considered to be a promising therapeutic strategy against resistance evolution. The rationale for this theory is that multitargeting antibiotics demand the simultaneous acquisition of multiple mutations at their respective target genes to achieve significant resistance. The theory presumes that individual mutations provide little or no benefit to the bacterial host. Here, we propose that such individual stepping-stone mutations can be prevalent in clinical bacterial isolates, as they provide significant resistance to other antimicrobial agents. To test this possibility, we focused on gepotidacin, an antibiotic candidate that selectively inhibits both bacterial DNA gyrase and topoisomerase IV. In a susceptible organism, Klebsiella pneumoniae, a combination of two specific mutations in these target proteins provide an >2,000-fold reduction in susceptibility, while individually, none of these mutations affect resistance significantly. Alarmingly, strains with decreased susceptibility against gepotidacin are found to be as virulent as the wild-type Klebsiella pneumoniae strain in a murine model. Moreover, numerous pathogenic isolates carry mutations which could promote the evolution of clinically significant reduction of susceptibility against gepotidacin in the future. As might be expected, prolonged exposure to ciprofloxacin, a clinically widely employed gyrase inhibitor, coselected for reduced susceptibility against gepotidacin. We conclude that extensive antibiotic usage could select for mutations that serve as stepping-stones toward resistance against antimicrobial compounds still under development. Our research indicates that even balanced multitargeting antibiotics are prone to resistance evolution.


Assuntos
Antibacterianos/farmacologia , Farmacorresistência Bacteriana/efeitos dos fármacos , Farmacorresistência Bacteriana/genética , Klebsiella pneumoniae/efeitos dos fármacos , Mutação , Acenaftenos/química , Acenaftenos/farmacologia , Animais , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Ciprofloxacina/farmacologia , DNA Girase/química , DNA Girase/genética , DNA Girase/metabolismo , Evolução Molecular Direcionada , Escherichia coli/efeitos dos fármacos , Escherichia coli/genética , Fluoroquinolonas/farmacologia , Aptidão Genética , Compostos Heterocíclicos com 3 Anéis/química , Compostos Heterocíclicos com 3 Anéis/farmacologia , Infecções por Klebsiella/microbiologia , Klebsiella pneumoniae/genética , Klebsiella pneumoniae/patogenicidade , Camundongos , Testes de Sensibilidade Microbiana , Simulação de Dinâmica Molecular , Virulência/genética
7.
Nat Microbiol ; 3(6): 718-731, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29795541

RESUMO

Antimicrobial peptides are promising alternative antimicrobial agents. However, little is known about whether resistance to small-molecule antibiotics leads to cross-resistance (decreased sensitivity) or collateral sensitivity (increased sensitivity) to antimicrobial peptides. We systematically addressed this question by studying the susceptibilities of a comprehensive set of 60 antibiotic-resistant Escherichia coli strains towards 24 antimicrobial peptides. Strikingly, antibiotic-resistant bacteria show a high frequency of collateral sensitivity to antimicrobial peptides, whereas cross-resistance is relatively rare. We identify clinically relevant multidrug-resistance mutations that increase bacterial sensitivity to antimicrobial peptides. Collateral sensitivity in multidrug-resistant bacteria arises partly through regulatory changes shaping the lipopolysaccharide composition of the bacterial outer membrane. These advances allow the identification of antimicrobial peptide-antibiotic combinations that enhance antibiotic activity against multidrug-resistant bacteria and slow down de novo evolution of resistance. In particular, when co-administered as an adjuvant, the antimicrobial peptide glycine-leucine-amide caused up to 30-fold decrease in the antibiotic resistance level of resistant bacteria. Our work provides guidelines for the development of efficient peptide-based therapies of antibiotic-resistant infections.


Assuntos
Antibacterianos/farmacologia , Peptídeos Catiônicos Antimicrobianos/farmacologia , Farmacorresistência Bacteriana Múltipla/efeitos dos fármacos , Escherichia coli/crescimento & desenvolvimento , Proteínas da Membrana Bacteriana Externa/genética , Sinergismo Farmacológico , Escherichia coli/efeitos dos fármacos , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Testes de Sensibilidade Microbiana , Mutação , Bibliotecas de Moléculas Pequenas/farmacologia
8.
Proc Natl Acad Sci U S A ; 111(32): 11762-7, 2014 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-25071190

RESUMO

A central unresolved issue in evolutionary biology is how metabolic innovations emerge. Low-level enzymatic side activities are frequent and can potentially be recruited for new biochemical functions. However, the role of such underground reactions in adaptation toward novel environments has remained largely unknown and out of reach of computational predictions, not least because these issues demand analyses at the level of the entire metabolic network. Here, we provide a comprehensive computational model of the underground metabolism in Escherichia coli. Most underground reactions are not isolated and 45% of them can be fully wired into the existing network and form novel pathways that produce key precursors for cell growth. This observation allowed us to conduct an integrated genome-wide in silico and experimental survey to characterize the evolutionary potential of E. coli to adapt to hundreds of nutrient conditions. We revealed that underground reactions allow growth in new environments when their activity is increased. We estimate that at least ∼20% of the underground reactions that can be connected to the existing network confer a fitness advantage under specific environments. Moreover, our results demonstrate that the genetic basis of evolutionary adaptations via underground metabolism is computationally predictable. The approach used here has potential for various application areas from bioengineering to medical genetics.


Assuntos
Evolução Biológica , Redes e Vias Metabólicas , Adaptação Fisiológica/genética , Simulação por Computador , Enzimas/genética , Enzimas/metabolismo , Escherichia coli K12/genética , Escherichia coli K12/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Genoma Bacteriano , Redes e Vias Metabólicas/genética , Modelos Biológicos , Fenótipo
9.
Nat Commun ; 5: 4352, 2014 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-25000950

RESUMO

Understanding how evolution of antimicrobial resistance increases resistance to other drugs is a challenge of profound importance. By combining experimental evolution and genome sequencing of 63 laboratory-evolved lines, we charted a map of cross-resistance interactions between antibiotics in Escherichia coli, and explored the driving evolutionary principles. Here, we show that (1) convergent molecular evolution is prevalent across antibiotic treatments, (2) resistance conferring mutations simultaneously enhance sensitivity to many other drugs and (3) 27% of the accumulated mutations generate proteins with compromised activities, suggesting that antibiotic adaptation can partly be achieved without gain of novel function. By using knowledge on antibiotic properties, we examined the determinants of cross-resistance and identified chemogenomic profile similarity between antibiotics as the strongest predictor. In contrast, cross-resistance between two antibiotics is independent of whether they show synergistic effects in combination. These results have important implications on the development of novel antimicrobial strategies.


Assuntos
Farmacorresistência Bacteriana Múltipla/genética , Escherichia coli/genética , Evolução Molecular , Mutação , Adaptação Biológica/genética , Genoma Bacteriano , Seleção Genética , Análise de Sequência de DNA
10.
Mol Syst Biol ; 9: 700, 2013 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-24169403

RESUMO

The evolution of resistance to a single antibiotic is frequently accompanied by increased resistance to multiple other antimicrobial agents. In sharp contrast, very little is known about the frequency and mechanisms underlying collateral sensitivity. In this case, genetic adaptation under antibiotic stress yields enhanced sensitivity to other antibiotics. Using large-scale laboratory evolutionary experiments with Escherichia coli, we demonstrate that collateral sensitivity occurs frequently during the evolution of antibiotic resistance. Specifically, populations adapted to aminoglycosides have an especially low fitness in the presence of several other antibiotics. Whole-genome sequencing of laboratory-evolved strains revealed multiple mechanisms underlying aminoglycoside resistance, including a reduction in the proton-motive force (PMF) across the inner membrane. We propose that as a side effect, these mutations diminish the activity of PMF-dependent major efflux pumps (including the AcrAB transporter), leading to hypersensitivity to several other antibiotics. More generally, our work offers an insight into the mechanisms that drive the evolution of negative trade-offs under antibiotic selection.


Assuntos
Antibacterianos/farmacologia , Evolução Biológica , Proteínas de Escherichia coli/genética , Escherichia coli/efeitos dos fármacos , Genoma Bacteriano , Proteínas de Membrana Transportadoras/genética , Aminoglicosídeos/metabolismo , Aminoglicosídeos/farmacologia , Antibacterianos/metabolismo , Transporte Biológico , Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo , Resistência Microbiana a Medicamentos/genética , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/metabolismo , Sequenciamento de Nucleotídeos em Larga Escala , Proteínas de Membrana Transportadoras/metabolismo , Redes e Vias Metabólicas , Testes de Sensibilidade Microbiana , Mutação , Seleção Genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...